
Digital Logic Circuits
Intro to CAD and Verilog

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Arithmetic circuits

2CS-173, © EPFL, Spring 2025

3

Previously

▪ Implemented +/- arithmetic circuits
using logic gates
• Basic building blocks: full adder and subtractor

• N-bit ripple-carry adder in two’s complement

▪ Discovered the importance of circuit delay
• Examples of critical path delay computation

▪ Built faster adders: Carry-select adder

▪ Barrel shifters
• Used multiplexers to perform logic and arithmetic shift

CS-173, © EPFL, Spring 2025

Let’s Talk About…
…Computer-Aided Design of logic circuits
and Hardware Design Languages

4CS-173, © EPFL, Spring 2025

5

Learning Outcomes

▪ Learn the basic steps of the computer-aided
design (CAD) process for building complex
digital logic circuits

▪ Get introduced to Verilog hardware description language

▪ Write a piece of Verilog code that models a logic circuit described
as a network of logic gates
• Structural (i.e., gate-level) modeling in Verilog

▪ In Verilog, model a complex circuit by instantiating and connecting
subcircuits also modeled in Verilog

CS-173, © EPFL, Spring 2025

Quick Outline

▪ Computer-Aided Design Flow
• Design entry

• Schematic capture

• Hardware description language

• Logic synthesis

• Functional simulation

• Physical design

• Timing simulation

• Circuit implementation

▪ Silicon wafer

6CS-173, © EPFL, Spring 2025

▪ Verilog HDL
• Brief history

• Structural circuit modeling

• Names

• Modules

• Ports

• Subcircuits

• Examples:
• Full-adder

• Four-bit Ripple-Carry Adder

Computer-Aided Design
Introduction

7CS-173, © EPFL, Spring 2025

8

CAD Design Flow
Introduction to CAD Tools

▪ Logic circuits found in today’s complex computing systems
cannot be designed manually
• Designers of logic circuits heavily rely on the availability of

computer-aided design (CAD) tools

▪ CAD design flow:

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
incorrect Timing requirements

not met

Design
Conception

9

Design Entry
Introduction to CAD Tools

▪ Design Entry
• The starting point in the process of designing a logic circuit

• The conception of what the circuit is supposed to do and
the formulation of its general organization and structure

• Performed by the designers without the guidance of CAD tools;
requires experience and intuition

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

Front-end tools

10

Design Entry, Contd.
Introduction to CAD Tools

▪ Approach 1: Schematic capture
• Drawing logic gates and interconnecting them with wires

• Schematic tools provide libraries of gates and other circuit components

• Hierarchical design
• Subcircuits previously created can be represented as graphical symbols

and included (reused) in the schematic

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

Front-end tools

11

Design Entry, Contd.
Introduction to CAD Tools

▪ Approach 2: Hardware Description Language (HDL)
• An HDL is similar to a typical computer programming language except

that an HDL is used to describe hardware rather than a program
to be executed on a computer

▪ Mainstream HDL languages supported by vendors of digital
hardware technology and officially endorsed as IEEE standards
• Verilog HDL (CS-173) and VHDL*

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

[*] Very High Speed Integrated Circuit Hardware Description Language

Front-end tools

12

HDL vs. Schematic Capture
Introduction to CAD Tools

▪ HDL vs. Schematic Capture
• HDLs supported by many companies: no need to change the design

from one company to another) → Easy portability

• Design entry means writing Verilog source code; the code is plain text,
making it easy to include it in the documentation to explain its
functionality → Easy sharing and reuse

• Similar to schematic capture, HDLs support hierarchical design

• HDL source can be combined with schematic capture (e.g., a subcircuit)
CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

Front-end tools

13

Logic Synthesis
Introduction to CAD Tools

▪ Logic Synthesis
• Translating HDL code into a network of logic gates

• The output is the set of logic expressions describing the logic functions
the circuit should realize

• Internally manipulates logic expressions to automatically generate
an equivalent but better circuit (e.g., faster, smaller, low power, etc.)

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

Front-end tools

Front-end tools

14

Functional Simulation
Introduction to CAD Tools

▪ Functional Simulation
• A circuit described in the form of logic functions can be simulated

to verify that it will work as expected

• Functional simulators assume the logic functions will be implemented
with perfect gates (zero-delay model)

• For the sequence of inputs specified by the designers,
the simulator evaluates the circuit outputs and produces the results
(e.g., timing waveforms) to be analyzed by the designers

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

15

Physical Design
Introduction to CAD Tools

▪ Physical Design
• Mapping a circuit described in the form of logic expressions into

a realization that uses logic gates or other hardware components available

• Placement: Determine the absolute and relative location of
the hardware components on the physical chip

• Routing: Determine the location and shape of the wiring connections
that have to be made between the inputs and outputs of the hardware
components to connect them appropriately

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

Back-end tools

Back-end tools

16

Timing Simulation
Introduction to CAD Tools

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

▪ Timing Simulation
• Real circuits cannot perform their function with zero delay

• Logic propagation delay: Logic elements need time to generate a valid
output whenever there are changes in the value of their inputs

• Wire propagation delay: signals propagating along real metal wires that
connect various logic elements take some time to reach their destinations

• Timing simulators evaluate the expected circuit delays; then, the designers
check whether the circuit meets the goals (i.e., so-called timing constraints)

17

Circuit Implementation
Introduction to CAD Tools

CS-173, © EPFL, Spring 2025

Design
Entry

Logic
Synthesis

Functional
Simulation

Physical
Design

Timing
Simulation

Circuit
Implementation

Design
Conception

▪ Circuit Implementation
• Having ascertained that the circuit meets all desired requirements,

the circuit is ready to be implemented on an actual chip

• Options ahead
• Chip fabrication ([+] highest performance, [-] extremely expensive) or

• Chip configuration ([+] flexible, [+] affordable, [-] lower performance):
If a programmable hardware device* is used as a baseline, then the desired logic
functionality can be implemented by simply reprogramming the device configuration

Back-end tools

[*] Field-Programmable Gate Array (FPGA): Wiki link

https://en.wikipedia.org/wiki/Field-programmable_gate_array

18CS-173, © EPFL, Spring 2025

Silicon Wafer
…containing many identical copies of a chip, each made of millions or even billions of transistors
Online reading for enthusiasts: Visit waferpro.com or Wiki

https://waferpro.com/what-is-a-silicon-wafer/
https://en.wikipedia.org/wiki/Wafer_(electronics)

CS-173, © EPFL, Spring 2025 19

Verilog HDL
• Introduction

• Structural modeling

20CS-173, © EPFL, Spring 2025

21

Brief History of Verilog

▪ HDLs were introduced in the mid-1980s as languages for
describing the behavior of a logic circuit

▪ Verilog was invented by Phil Moorby and Prabhu Goel ~1984
• A proprietary language owned by Gateway Design Automation Inc.

• Extensively modified between 1984 and 1990

• In 1990, Gateway Design Automation Inc. was acquired by Cadence Design
Systems, one of the biggest suppliers of electronic design technologies
• Cadence recognized the value of Verilog and pushed for making it open

• IEEE standards followed (Wiki)

CS-173, © EPFL, Spring 2025
Source: realdigital.org

https://computerhistory.org/profile/philip-moorby/
https://en.wikipedia.org/wiki/Prabhu_Goel
https://www.cadence.com/en_US/home.html
https://en.wikipedia.org/wiki/Verilog#:~:text=Verilog%2C%20standardized%20as%20IEEE%201364,register%2Dtransfer%20level%20of%20abstraction.
https://www.realdigital.org/doc/1946d210d1411b214203a6673322a61f

22

Modeling of Digital Circuits in Verilog

▪ A logic circuit is specified in the form of a module

▪ Option 1: Structural modeling
• Gate-level modeling: Using Verilog constructs to describe the structure

of the circuit in terms of circuit elements, such as logic gates

• A larger circuit is defined by writing code that instantiates and connects
circuit elements

▪ Option 2: Behavioral modeling
• Describe a circuit more abstractly, using logic expressions and Verilog

programming constructs to describe the desired circuit behavior,
and not its structure in terms of gates

CS-173, © EPFL, Spring 2025

Note 1: The square
brackets indicate an

optional field

Note 2: Braces indicate
that additional entries

are permitted

23

Structural Modeling with Logic Gates
Gate-Level Modeling

▪ In structural modeling, predefined modules that implement
basic logic gates are used

▪ Logic gate instantiation statement:

▪ Verilog built-in gates:
(incomplete list, temporarily…)

CS-173, © EPFL, Spring 2025

gate_name [instance_name] (out_port, in_port{, in_port});

and xor

nand xnor

or buf

nor not

24

Structural Modeling with Logic Gates, Contd.
Gate-Level Modeling

▪ Recall logic gate instantiation statement:

▪ Examples
• or Or1 (z, x1, x2, x3), xor Xor5 (c, a, b)

• not (f, a), nand (g, d, b, w1, w3)

CS-173, © EPFL, Spring 2025

gate_name [instance_name](out_port, in_port{, in_port});

Reserved
word

Names can be any valid identifiers

List of ports

Instance names can be omitted Mandatory ;

Note 1: The square
brackets indicate an

optional field

Note 2: Braces indicate
that additional entries

are permitted

25

Verilog Syntax
In a Nutshell

▪ Names
• Must start with a letter

• Can contain any letter, number, “_” (underscore), or $

▪ Verilog is case sensitive

• s  S

• Example5  example5

▪ Syntax does not enforce a particular style
• White space characters (i.e., space, TAB) and blank lines are ignored

• Readability matters: Use indentation and blank lines

• Comments start with // (double slash)

CS-173, © EPFL, Spring 2025

26

Modules in Verilog
Introduction

▪ A circuit or subcircuit described with Verilog code is a module

▪ Module has a name, inputs, and outputs, referred to as its ports

CS-173, © EPFL, Spring 2025

module module_name [(port_name{, port_name})];
[input declarations]
[output declarations]
[wire declarations]
[logic gate instantiations]
[module instantiations]
// and many more

endmodule

Note 1: The square
brackets indicate an

optional field

Note 2: Braces indicate
that additional entries

are permitted

Note 3: In bold, reserved
words (i.e., keywords)

27

Modules in Verilog
Introduction

▪ A circuit or subcircuit described with Verilog code is a module

▪ Module has a name, inputs, and outputs, referred to as its ports

CS-173, © EPFL, Spring 2025

module module_name [(port_name{, port_name})];
[input declarations]
[output declarations]
[wire declarations]
[gate instantiations]
[module instantiations]
// and many more

endmodule

Reserved
keywords

Names can be any valid identifiers

Wire (net) declarations are often omitted.
Verilog assumes signals are nets

by default

Anything after // is a comment
and it gets ignored

List of ports
Mandatory ;

28

Ports in Verilog
Introduction

▪ Ports are the primary ways to communicate with the module

▪ Port directions
• Input

• input-only port, receives values from outside

• Output
• output-only port, sends values to the outside

• Inout
• bidirectional port, receives and sends values

CS-173, © EPFL, Spring 2025

29

Ports in Verilog

▪ Port declaration syntax:

▪ Examples:
• input diff; // 1-bit input named diff, wire type

• inout [15:0] data; // 16-bit bidirectional vector named data, wire type

• output [3:0] f; // 4-bit output named f, wire type

CS-173, © EPFL, Spring 2025

port_direction data_type [port_size] port_name;

If not specified, implicitly assumes
a wire or a bundle of wires (a vector)

Adders Modeled in Verilog

30CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

31

Full-Adder in Verilog
Structural (gate-level) model

▪ Algorithm
• Name your circuit (i.e., label it)

• That will be the name of your Verilog module

• Label all inputs and outputs
• Those will be the input and output

port names of your Verilog module

• Label all logic gates

• Those will be the names of your gate instances

• Same gate type can be instantiated multiple
times, provided the instance name is unique

• Label all internal nets (i.e., wires, signals)
• Those will be the names of the wires in your Verilog module

CS-173, © EPFL, Spring 2025

Xor1

And1

And2

And3

Or1

w1

w2

w3

fulladd

E
X

A
M

P
L

E
S

32

Full-Adder in Verilog
Structural (gate-level) model

CS-173, © EPFL, Spring 2025

// Structural modeling of a full-adder

module fulladd (a, b, c_in, s, c_out);
// ----- port definitions -----
input a, b, c_in;
output s, c_out;
// ----- intermediate signals -----
wire w1, w2, w3;
// ----- design implementation -----
and And1 (w1, a, b);
and And2 (w2, a, c_in);
and And3 (w3, b, c_in);
or Or1 (c_out, w1, w2, w3);
xor Xor1 (s, a, b, c_in);

endmodule

Xor1

And1

And2

And3

Or1

w1

w2

w3

fulladd

E
X

A
M

P
L

E
S

33

Full-Adder in Verilog, Simplified
Structural model

CS-173, © EPFL, Spring 2025

// Structural modeling of a full-adder
// Simplified version
// - No gate instance names

module fulladd (a, b, c_in, s, c_out);
input a, b, c_in;
output s, c_out;
wire w1, w2, w3;

and (w1, a, b);
and (w2, a, c_in);
and (w3, b, c_in);
or (c_out, w1, w2, w3);
xor (s, a, b, c_in);

endmodule

Xor1

And1

And2

And3

Or1

w1

w2

w3

fulladd

▪ A Verilog module can be included as a subcircuit in another module

▪ Modules should be defined in the same source file, in any order
(or the Verilog compiler must be told where each module is located)

▪ Module instantiation statement:

module_name instance_name (.port_name ([expression]) { , .port_name ([expression]) });

34

Subcircuits in Verilog

CS-173, © EPFL, Spring 2025

▪ A Verilog module can be included as a subcircuit in another module

▪ Modules should be defined in the same source file, in any order
(or the Verilog compiler must be told where each module is located)

▪ Module instantiation statement:

module_name instance_name (.port_name ([expression]) { , .port_name ([expression]) });

35

Subcircuits in Verilog

CS-173, © EPFL, Spring 2025

Names can be any valid
identifiers Mandatory ;

The list defines how subcircuit ports connect to the rest
of the module; if the ports are listed in the same order
as in the subcircuit, then .port_name can be omitted

(not advised, it is error-prone!)

Name of a port
in the subcircuit

Specifies a connection
to that port

E
X

A
M

P
L

E
S

36

Four-bit Ripple-Carry Adder
Verilog

▪ Recall the names of the ports
of the subcircuit and their
direction (input, output)

▪ Example full-adder instantiation:

CS-173, © EPFL, Spring 2025

fulladd stage2 (.c_in(C[2]), .a(A[2]), .b(B[2]), .s(S[2]), .c_out(C[3]));

fulladd

▪ Plan the structure of the bigger
module; give names to the ports
and decide how to connect them
to the subcircuits

FA…

adder4

Port b of fulladd connects to port B[2] of the larger module

stage i

E
X

A
M

P
L

E
S

37

Four-bit Ripple-Carry Adder
Verilog

CS-173, © EPFL, Spring 2025

module adder4 (Cin, A, B, S, Cout);
// ----- port definitions -----
input Cin;
input [3:0] A, B; // 4-bit vectors
output [3:0] S; // 4-bit vector
output Cout;

// ----- intermediate signals -----
wire [3:1] C; // 3-bit vector

// ----- design implementation -----
fulladd stage0 (.c_in(Cin), .a(A[0]), .b(B[0]), .s(S[0]), .c_out(C[1]));
fulladd stage1 (.c_in(C[1]), .a(A[1]), .b(B[1]), .s(S[1]), .c_out(C[2]));
fulladd stage2 (.c_in(C[2]), .a(A[2]), .b(B[2]), .s(S[2]), .c_out(C[3]));
fulladd stage3 (.c_in(C[3]), .a(A[3]), .b(B[3]), .s(S[3]), .c_out(Cout));

endmodule

FAFA FA

adder4

CS-173, © EPFL, Spring 2025 38

39

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 2: Introduction to Logic Circuits
▪ 2.9, 2.10.1

▪ Chapter 5: Verilog Hardware
Description Language
▪ 5.7

