Digital Logic Circuits

Intro to CAD and Verilog

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic

FUNDAMENTALH o Spring 2025

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

010103
o302 9014,

)
S '\§> S iy,

N QEIRS %,
N oSS
S & 53
B
N I S
= 3rE g
A s
e
A 202
: S 2%
Previously on FDS 2 2% %
Q o 2 % |
A 2O <
O A o ??0 Q0
oy %y “Prorgrotott

Arithmetic circuits 2 O
202* 0?0 ?[7‘7TIL7'[£1*[n'm““QQ

% 0 “or, rgrorott
??00 ‘
Torgrorot

CS-173, © EPFL, Spring 2025 2

Previously S 0101010y,
QY.
. . . . 6\7 Q’» AD 40301010300,
= Implemented +/- arithmetic circuits IS 20,
. . ~ > \§)
using logic gates fa 3 § &
» Basic building blocks: full adder and subtractor 5.3 S g
S . , — Mo
* N-bit ripple-carry adder in two's complement & oAl
R s
= Discovered the importance of circuit delay % 3 8%
é
« Examples of critical path delay computation S, D %, ,
s P 2 0y o
' : o‘;s 20 0?0 %0rprgrgrovt®
= Built faster adders: Carry-select adder 2 or g, <
02 ?0? 9T@rprgrot
= Barrel shifters 030? 00 grgrats

» Used multiplexers to perform logic and arithmetic shift TOUTDTUTD'[D“

CS-173, © EPFL, Spring 2025 3

......

Let's Talk About...

e Ko SN RN IO] 2
. /z“/. X ,/- 2

.....

.........

........

000000

......

........

Aided Design of logic circuits

..Computer-
and Hardware Design Languages

CS-173, © EPFL, Spring 2025

Learning Outcomes A

= _earn the basic steps of the computer-aided "y
design (CAD) process for building complex ?
digital logic circuits

= Get introduced to Verilog hardware description language

= \Write a piece of Verilog code that models a logic circuit described
as a network of logic gates
« Structural (i.e., gate-level) modeling in Verilog

= |[n Verilog, model a complex circuit by instantiating and connecting
subcircuits also modeled in Verilog

Quick Outline

= Verilog HDL
o Brief history

» Computer-Aided Design Flow
e Design entry

« Schematic capture o Structural circuit modeling

 Hardware description language « Names
 Logic synthesis « Modules
» Functional simulation * Ports
 Physical design Subcircuits
« Timing simulation « Examples:
« Circuit implementation » Full-adder

« Four-bit Ripple-Carry Adder

= Silicon wafer

CS-173, © EPFL, Spring 2025

Computer-Aided Design

Introduction

CS-173, © EPFL, Spring 2025

CAD Design Flow

Introduction to CAD Tools

= _ogic circuits found in today’'s complex computing systems
cannot be designed manually

 Designers of logic circuits heavily rely on the availability of
computer-aided design (CAD) tools

= CAD design flow:
_, Design =~ Logic _ Functional _ Physical = Timing Circuit
Conception Entry Synthesis Simulation Design Simulation Implementation

Design /

incorrect Timing requirements
not met

CS-173, © EPFL, Spring 2025

Design Entry

Introduction to CAD Tools
Front-end tools

Design __’ Design _ ~ Logic ~_ Functional : Physical Timing
Conception . Entry Synthesis Simulation : Design Simulation

__

* Design Entry
» The starting point in the process of designing a logic circuit

* The conception of what the circuit is supposed to do and
the formulation of its general organization and structure

» Performed by the designers without the guidance of CAD tools;

requires experience and intuition

CS-173, © EPFL, Spring 2025

Circuit
Implementation

Design Entry, Contd.

Introduction to CAD Tools
Front-end tools

Design __’ Design _ ~ Logic _ Functional : Physical Timing | Circuit
Conception Entry Synthesis Simulation Design Simulation Implementation

__

= Approach 1: Schematic capture
« Drawing logic gates and interconnecting them with wires
« Schematic tools provide libraries of gates and other circuit components

 Hierarchical design

« Subcircuits previously created can be represented as graphical symbols
and included (reused) in the schematic

CS-173, © EPFL, Spring 2025 10

Design Entry, Contd.

Introduction to CAD Tools
Front-end tools

Design __’ Design _ ~ Logic _ Functional : Physical Timing | Circuit
Conception Entry Synthesis Simulation Design Simulation Implementation

__

= Approach 2: Hardware Description Language (HDL)

« An HDL is similar to a typical computer programming language except
that an HDL is used to describe hardware rather than a program
to be executed on a computer

= Mainstream HDL languages supported by vendors of digital
hardware technology and officially endorsed as |IEEE standards
* Verilog HDL (CS-173) and VHDL"

CS-173, © EPFL, Spring 2025 A o o 11
[*] Very High Speed Integrated Circuit Hardware Description Language

HDL vs. Schematic Capture

Introduction to CAD Tools
Front-end tools

Design __’ Design _ ~ Logic _ Functional : Physical Timing | Circuit
Conception Entry Synthesis Simulation Design Simulation Implementation

__

= HDL vs. Schematic Capture

« HDLs supported by many companies: no need to change the design
from one company to another) — Easy portability

« Design entry means writing Verilog source code,; the code is plain text,
making it easy to include it in the documentation to explain its
functionality — Easy sharing and reuse

« Similar to schematic capture, HDLs support hierarchical design
« HDL source can be combined with schematic capture (e.g., a subcircuit)

CS-173, © EPFL, Spring 2025 12

Logic Synthesis

Introduction to CAD Tools
Front-end tools

Design __’ Design =~ Logic _ Functional : Physical Timing | Circuit
Conception Entry Synthesis Simulation Design Simulation Implementation

__

= Logic Synthesis
» Translating HDL code into a network of logic gates

» The output is the set of logic expressions describing the logic functions
the circuit should realize

* Internally manipulates logic expressions to automatically generate
an equivalent but better circuit (e.g., faster, smaller, low power, etc.)

CS-173, © EPFL, Spring 2025 13

Functional Simulation

Introduction to CAD Tools
Front-end tools

Design _;’ Design =~ Logic _ Functional _’ Physical =~ Timing Circuit
Conception Entry Synthesis Simulation Design Simulation Implementation

__

= Functional Simulation

* A circuit described in the form of logic functions can be simulated
to verify that it will work as expected

 Functional simulators assume the logic functions will be implemented
with perfect gates (zero-delay model)

 For the sequence of inputs specified by the designers,
the simulator evaluates the circuit outputs and produces the results
(e.g., timing waveforms) to be analyzed by the designers

CS-173, © EPFL, Spring 2025 14

Physical Design
Introduction to CAD Tools
Back-end tools

Design __ Design _~ Logic _ Functional : Physical Timing Circuit |
Conception Entry Synthesis Simulation Design Simulation Implementation

__

= Physical Design
« Mapping a circuit described in the form of logic expressions into
a realization that uses logic gates or other hardware components available

* Placement: Determine the absolute and relative location of
the hardware components on the physical chip

 Routing: Determine the location and shape of the wiring connections
that have to be made between the inputs and outputs of the hardware
components to connect them appropriately

CS-173, © EPFL, Spring 2025 15

Timing Simulation
Introduction to CAD Tools
Back-end tools

Design __ Design _ Logic _ Functional : Physical = Timing Circuit .
Conception Entry Synthesis Simulation : Design Simulation Implementation
e o

= Timing Simulation
 Real circuits cannot perform their function with zero delay

* Logic propagation delay: Logic elements need time to generate a valid
output whenever there are changes in the value of their inputs

» Wire propagation delay: signals propagating along real metal wires that
connect various logic elements take some time to reach their destinations

« Timing simulators evaluate the expected circuit delays; then, the designers
check whether the circuit meets the goals (i.e., so-called timing constraints)

CS-173, © EPFL, Spring 2025 16

Circuit Implementation

Introduction to CAD Tools
Back-end tools

Design __ Design _ Logic _ Functional : Physical Timing Circuit |
Conception Entry Synthesis Simulation Design Simulation Implementation

__

= Circuit Implementation

« Having ascertained that the circuit meets all desired requirements,
the circuit is ready to be implemented on an actual chip

» Options ahead
- Chip fabrication ([+] highest performance, [-] extremely expensive) or

- Chip configuration ([+] flexible, [+] affordable, [-] lower performance):
If a programmable hardware device” is used as a baseline, then the desired logic
functionality can be implemented by simply reprogramming the device configuration

CS-173, © EPFL, Spring 2025 _ Y
[*] Field-Programmable Gate Array (FPGA): Wiki link

https://en.wikipedia.org/wiki/Field-programmable_gate_array

Silicon Wafer

identical copies of a chip,

rpro.com omLiki

iSi

V.

ining many

Online reading for enthusiasts

...conta

https://waferpro.com/what-is-a-silicon-wafer/
https://en.wikipedia.org/wiki/Wafer_(electronics)

CS-173, © EPFL, Spring 2025

19

14

L

=
— =
‘- S
T c
(G
5§ E
o) 5 ©
LO
O - -
ommm O o
T £
Q = n ”
> .. &
©
2
%

Brief History of Verilog

= HDLs were introduced in the mid-1980s as languages for
describing the behavior of a logic circuit

= \/erilog was invented by Phil Moorby and Prabhu Goel ~1984

« A proprietary language owned by Gateway Design Automation Inc.
« Extensively modified between 1984 and 1990
 In 1990, Gateway Design Automation Inc. was acquired by Cadence Design
Systems, one of the biggest suppliers of electronic design technologies

« Cadence recognized the value of Verilog and pushed for making it open
« |EEE standards followed (Wiki)

CS-173, © EPFL, Spring 2025

o 21
Source: realdigital.orqg

https://computerhistory.org/profile/philip-moorby/
https://en.wikipedia.org/wiki/Prabhu_Goel
https://www.cadence.com/en_US/home.html
https://en.wikipedia.org/wiki/Verilog#:~:text=Verilog%2C%20standardized%20as%20IEEE%201364,register%2Dtransfer%20level%20of%20abstraction.
https://www.realdigital.org/doc/1946d210d1411b214203a6673322a61f

Modeling of Digital Circuits in Verilog

= A'logic circuit is specified in the form of a module

= Option 1: Structural modeling

« Gate-level modeling: Using Verilog constructs to describe the structure
of the circuit in terms of circuit elements, such as logic gates

 Alarger circuit is defined by writing code that instantiates and connects
circuit elements

= Option 2: Behavioral modeling

 Describe a circuit more abstractly, using logic expressions and Verilog
programming constructs to describe the desired circuit behavior,
and not its structure in terms of gates

CS-173, © EPFL, Spring 2025

22

Structural Modeling with Logic Gates

Gate-Level Modeling

= |n structural modeling, predefined modules that implement
pasic logic gates are used

» | 0gic gate instantiation statement:

gate_name [instance_name] (out_port, in_port{, in_port});

Note 1: The square
brackets indicate an
optional field

= \Verilog built-in gates:

(incomplete list, temporarily...)

and Xor

Note 2: Braces indicate
that additional entries
or buf are permitted

nand Xxnor

nor not

Structural Modeling with Logic Gates, Contd.

Gate-Level Modeling

» Recall logic gate instantiation statement:

Reserved Names can be ahy Valid identifiers

word
/ / M [ist Of ports
'

gate_name [instance_name](out_port, in_port{, in_port});

!

Thstanhce hames Cah be omitted Mahdatory ;\

= Examples
« orOr1 (z, x1, x2,x3), xor Xor5 (c, a, b)
« not (f, a),nand (g, d, b, w1, w3)

CS-173, © EPFL, Spring 2025

Note 1: The square
brackets indicate an
optional field

Note 2: Braces indicate

that additional entries
are permitted

24

Verilog Syntax

In a Nutshell

* Names
« Must start with a letter
« Can contain any letter, number, “_" (underscore), or S

= \erilog is case sensitive
*S#£S
« Exampleb # example5

= Syntax does not enforce a particular style

« White space characters (i.e., space, TAB) and blank lines are ignored
« Readability matters: Use indentation and blank lines
« Comments start with // (double slash)

Modules in Verilog

Introduction

= A circuit or subcircuit described with Verilog code is a module

= Module has a name, inputs, and outputs, referred to as its ports

module module_name [(port_name{, port_name})];
input declarations]
output declarations]
\wire declarations]
logic gate instantiations]
'module instantiations]
// and many more
endmodule

Note 1: The square
brackets indicate an
optional field

Note 2: Braces indicate
that additional entries
are permitted

Note 3: In bold, reserved

words (i.e., keywords)

Modules in Verilog

Introduction

= A circuit or subcircuit described with Verilog code is a module
= Module has a name, inputs, and outputs, referred to as its ports

Names Can be any valid identifiers [ist Of ports
l / Mandatory ;
),

module module_name [(port_name{, port_name}

Reserved input declarations]
keywords output declarations] Wire (het) decClarations are often omitted.
\wire dedara’[]ons] < Verilog assumes sighals are nets

(gate instantiations] by default

'module instantiations]

// and many more < Anything after // is a Comment
endmodule and it gets ighored

CS-173, © EPFL, Spring 2025

27

Ports in Verilog

Introduction

= Ports are the primary ways to communicate with the module

= Port directions
* Input
* input-only port, receives values from outside
* Output
 output-only port, sends values to the outside

 Inout
* bidirectional port, receives and sends values

Ports in Verilog

= Port declaration syntax:

1f not specified, impliCitly assumes
3 Wire or a bundle of wires (a Vector)

/

port_direction data_type [port_size] port_name;

= Examples:
* input diff; // 1-bit input named diff, wire type
« inout [15:0] data; // 16-bit bidirectional vector named data, wire type
« output [3:0] f; // 4-bit output named f, wire type

CS-173, © EPFL, Spring 2025

29

CS-173, © EPFL, Spring 2025

Full-Adder in Verilog

Structural (gate-level) model

: fulladd
= Algorithm SRR
- Name your circuit (i.e., label it) /
. - That will be the name of your Verilog module _\XOH
o : : S
a « Label all inputs and outputs b - —/D
< 7, —
n » Those will be the input and output -t ; And1
port hames of your Verilog module | :)ﬂ
« Label all logic gates And2 or1 |
» Those will be the names of your gate instances). w2 ¢ out
« Same gate type can be instantiated multiple i And3 |
times, provided the instance name is unique ; w3

« Label all internal nets (i.e., wires, signals)

» Those will be the names of the wires in your Verilog module
CS-17/3, © EPFL, Spring 2025 31

~
~

Full-Adder in Verilog

Structural (gate-level) model

fulladd
// Structural modeling of a full-adder P T
module fulladd (a, b, c_in, s, c_out); a Xor1
" /] ----- port definitions ----- i _\D |
d . . h - LS
a input a, b, c_in; i —, :
% output s, c_out; c_in- And1 i
/] ----- intermediate signals ----- | W1 i
wire wl, w2, w3; | } i
/] ----- design implementation ----- And2 or1 |
and Andl (wl, a, b); | — W2 i
and And2 (w2, a, c_in);) — c-out
and And3 (w3, b, c_in); | And3
or Orl (c_out, wl, w2, w3); | w3 i
xor Xorl (s, a, b, c_in); '\\ ;
endmodule

S e e e e e e e =

CS-173, © EPFL, Spring 2025 32

Full-Adder in Verilog, Simplified

Structural model

// Structural modeling of a full-adder fulladd

// Simplified version P
// - No gate instance names
a - Xor1 |
» module fulladd (a, b, c_in, s, c_out); | L\ |

L . .. h -) > LS
a input a, b, c_in; i —, :
< output s, c_out; c_in- And1 i
] wire wl, w2, w3; Dﬂ
and (wl, a, b); And2 or1 i
and (w2, a, c_in); | —\ W2 i

in): : — c_out

and (w3, b, c_in); | / |
or (c_out, wl, w2, w3); | And3 i
xor (s, a, b, c_in); | w3 |
endmodule \ /

S e e e e e e e =

CS-173, © EPFL, Spring 2025 33

Subcircuits in Verilog

= A Verilog module can be included as a subcircuit in another module

= Modules should be defined in the same source file, in any order
(or the Verilog compiler must be told where each module is located)

» Module instantiation statement:

module_name instance_name (.port_name ([expression]) {, .port_name ([expression]) });

Subcircuits in Verilog

= A Verilog module can be included as a subcircuit in another module

= Modules should be defined in the same source file, in any order
(or the Verilog compiler must be told where each module is located)

» Module instantiation statement:

Names Cah be anhy valid Name of a port SpecCifies a connection
identifiers \ in the subCirCuit t0 that port Manhdatory ;

module_name instance_name (.port_name ([expression]) {, .port_name ([expression]) });

__

The list defines how subcircuit ports connect to the rest
of the module; if the ports are listed in the same order
as in the subcircuit, then .port_name can be omitted
CS-173, © EPFL, Spring 2025 (not advised, it is error-prone!) 35

Four-bit Ripple-Carry Adder

Verilog
= Recall the names of the ports = Plan the structure of the bigger
of the subcircuit and their module; give names to the ports
direction (input, output) and decide how to connect them
& to the subcircuits
I
ﬁ | . a - Y Az Bz
i adder4
<«— @ c_out c_in il «— c l l ________________________ ii
fulladd | C C,
. Cout —— = <t FA =24 —C
""""" T istagefll
= Example full-adder instantiation: Si
fulladd stage2 (.c_in(C[2]), .a(A[2]), .b(B[2]), .s(S[2]), .c_out(C[3]));
CS-17/3, © EPFL, Spring 2025 f 36

Port b of fulladd connects to port B[2] of the larger module

Four-bit Ripple-Carry Adder

Verilog
An 1Bn1 Al By Ay By
module adder4 (Cin, A, B, S, Cout); ,—T——l ————— qggqr&-—?-i—-——-I—r-~l
/] ----- port definitions ----- ' C C
input Cin; Cowt=1 FA [—c, .~ = FA [FA |+ Cu
input [3:0] A, B; // 4-bit vectors ___l ____________ l _____ f""
@ output [3:0] S; // 4-bit vector
E output Cout; Sn—1 S So
<
n
/] ----- intermediate signals -----

wire [3:1] C; // 3-bit vector

/] ----- design implementation -----

fulladd stageo (.c_in(Cin), .a(A[@]), .b(B[©]), .s(S[@]), .c_out(C[1]));

fulladd stagel (.c_in(C[1]), .a(A[1]), .b(B[1]), .s(S[1]), .c_out(C[2]));

fulladd stage2 (.c_in(C[2]), .a(A[2]), .b(B[2]), .s(S[2]), .c_out(C[3]));

fulladd stage3 (.c_in(C[3]), .a(A[3]), .b(B[3]), .s(S[3]), .c_out(Cout));
endmodule

CS-173, © EPFL, Spring 2025 37

CS-173, © EPFL, Spring 2025

38

Literature

DIGITAL LOGIC

with Verilog Design

= Chapter 2: Introduction to Logic Circuits
= 29,2101

CS-173, © EPFL, Spring 2025

J

DESIGIN
PR

Chapter 5: Verilog Hardware
Description Language
= 57

39

